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             Lecture Notes
Summary

Biomedical modeling includes two power-

ful mathematical approaches to aid in un-

derstanding complex biological systems: 

namely, forward and inverse modeling 

(see Slides 2 to 7). This lecture is primar-

ily focused on the latter, providing an in-

troduction to the concepts, techniques, and 

criteria used to develop, implement, and 

evaluate an inverse model. The combined 

technique of forward-inverse modeling (see 

Slide 8) is also discussed in the context of 

estimating the uncertainty in resulting in-

verse model parameters (1).

Forward modeling, which includes data 

simulation (see Slide 5), involves a set of 

mathematical equations describing a bio-

medical system of interest, designed to in-

corporate a desired degree of anatomical, 

physical, or biological detail (2). Forward 

models are used for generating realistic 

synthetic data (including prescribed noise 

characteristics) under precisely defi ned 

conditions. This allows candidate hypoth-

eses to be tested in silico by predicting 

outcomes to experimental states not easily 

achieved in living systems. Forward model-

ing can sometimes suggest improvements 

in experimental design and can potentially 

reduce the use of laboratory animals. For-

ward models can have arbitrary complex-

ity as required by the problem at hand, 

with model parameter values typically pre-

scribed based on published quantities.

Inverse modeling, which involves data 

fi tting (see Slides 6 and 7), uses parameter 

estimation techniques applied to mathemat-

ical equations designed to provide a “best 

fi t” to a set of experimental measurements, 

so as to extract values of desired model 

parameters often representing specifi c bio-

physical quantities (3). Data-fi tting tech-

niques generally involve an iterative pro-

cess of adjusting model parameter values 

to minimize the average difference between 

the model-predicted and experimental data. 

Evaluating the quality of an inverse mod-

el requires a combination of established 

mathematical techniques, as well as intu-

ition and experience, guided by a six-step 

process (see Slide 9), which is presented in 

detail in the remainder of the lecture.

Step 1: Select an appropriate mathe-

matical model

Polynomial, exponential, and other stan-

dard functions (also called “trend lines” in 

spreadsheet software) are often used when 

a data set appears to follow a mathematical 

trend but the governing relation is not un-

derstood. Physically based models, on the 

other hand, can be derived from underlying 

theoretical principles when the governing 

physical process is known. With physically 

based modeling, unlike modeling using 

trend lines, the resulting parameter values 

have a specifi c biophysical interpretation 

(Slide 10).

Step 2: Defi ne a “fi gure-of-merit” 

function

Also called an “error function,” this pro-

vides a measure of the agreement between 

the data and the model fi t for a given set of 

model parameters (see Slides 11 to 13). The 

form of the error function can be derived 

from probability theory (4, 5) and is often 

based on a weighted sum of squared residu-

als in which each residual measures the dif-

ference between a measured data point and 

the corresponding model-predicted value. 

The weight refl ects the variability of the 

measurement, so that the most reliable data 

points have the biggest infl uence on the er-

ror function. The process of minimizing the 

squared residuals error function is often 

called a “least-squares” model-fi tting ap-

proach.

Step 3: Adjust model parameters to get 

a “best fi t” to the data

This step involves several nuances and is 

therefore treated in detail (Slides 14 to 20). 

A relatively simple solution exists for the 

values of slope and intercept that minimize 

the least-squares error function to provide 

the best fi t of a straight line to a given set of 

data (see Slides 15 to 17). For this reason, 

it has historically been a common approach 

to “linearize” a given data set by graphing 

in terms of a suitable change of variables, 

such as the Lineweaver-Burk plot for en-

zymatic reactions (6), and then perform a 

linear regression (Slide 18). However, such 

linearization often distorts the data error 

structure, violates key assumptions, and af-

fects resulting model parameter values (3, 

7), which may lead to incorrect conclusions.

With ready access to computers, it is 

preferable to fi t nonlinear data using an ap-

propriate nonlinear inverse model. Obtain-

ing the best-fi t model involves computing 
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partial derivatives of the error function with 

respect to each model parameter (analyti-

cally or using numerical approximation), 

which must approach zero when the error 

function in minimized. The derivatives are 

then used to iteratively update an initial set 

of model parameters until the error func-

tion stops decreasing (see Slides 19 and 

20). The popular Levenberg-Marquardt 

method and alternative numerical methods 

for implementing these nonlinear minimi-

zation procedures are described in detail 

elsewhere (4, 8).

Step 4: Examine “goodness of fi t” to 

the data

A correlation coeffi cient is often used to 

characterize the goodness of fi t between the 

model and data. However, a high correla-

tion can exist even for a model that system-

atically differs from the data. Therefore, it 

is also important to examine a plot of the 

residuals. A good model fi t should yield re-

siduals that are uniformly spaced along the 

abscissa and normally distributed around 

zero with no systematic trends (Slide 21).

Step 5: Determine whether a much 

better fi t is possible

This is challenging. One diffi culty with 

nonlinear minimization, particularly with 

increasing model complexity, is the poten-

tial to get stuck in a local minimum of the 

error function without fi nding the global 

minimum (Slide 22). Although some mini-

mization algorithms are more robust than 

others (4), none can guarantee global con-

vergence for an arbitrarily complex nonlin-

ear error function. The only test is to repeat 

the process using a different set of initial 

model parameter guesses and determine 

whether an equivalent set of best-fi t param-

eters is obtained (see Slides 23 and 24). 

Another way to improve a model fi t is to 

increase the number of model parameters. 

When doing so, a statistical F-test should be 

used to determine whether the increase in 

model degrees of freedom is justifi ed by the 

decrease in fi tting error (Slides 25 and 26).

Step 6: Evaluate accuracy of best-fi t 

parameter values

The fi nal step is to determine the error in 

the estimated model parameter values. This 

involves fi tting the model to multiple data 

sets that differ only because of random 

variability and then examining the varia-

tion in the individual model parameters, 

typically expressed as a confi dence interval 

for each parameter value (4, 5). It is often 

impractical to do this using multiple data 

sets acquired from the same sample under 

a single set of conditions. Therefore, Monte 

Carlo simulation of synthetic data sets us-

ing known parameter values, but including 

noise representative of the actual measure-

ment noise, can be used to estimate the 

error in the parameter values obtained by 

inverse modeling (Slides 27 and 28). The 

simulations can be performed by using the 

inverse model itself or by using more com-

plex forward models that represent the ex-

perimental system. The bootstrap technique 

(Slide 29) is another method for generating 

synthetic data by shuffl ing and substituting 

data points from the original data set. These 

methods are powerful tools for the critical 

task of estimating the error in fi tted model 

parameters (Slide 30). In physically based 

inverse models, a further assessment is per-

formed to determine whether the estimated 

parameter values fall within a range that is 

reasonable and not physically impossible, 

to help ensure that the model parameters 

are properly interpreted in a real-world 

context (Slide 31).

The above inverse-modeling process of-

fers a powerful technique for maximizing 

the information that can be extracted from 

biomedical measurements and for improv-

ing the understanding of underlying bio-

physical processes. The problem set below 

was designed to reinforce key concepts 

by providing a real-world example from 

the biomedical literature, in which inverse 

modeling is used to determine the rates of 

cell proliferation and death for B lympho-

cytes (9), which are key players in the im-

mune response to infection (10). The solu-

tion requires formulating a physically based 

model of bromodeoxyuridine (BrdU) label-

ing, which is used to assess cell division, 

fi tting the model to published experimental 

data using both unweighted and weighted 

least-squares error functions, using boot-

strapping to determine confi dence intervals 

for model parameters, comparing resulting 

model parameters with values from the lit-

erature, and using the F-test to evaluate the 

effect of eliminating one parameter from 

the model. The slides conclude with a gen-

eral introduction to the problem set (Slides 

32 and 33) and a list of online resources and 

references for those who wish to explore 

the topic of model fi tting and error analysis

in greater detail (Slide 34).

Problem Set
Following infection, B cells undergo affi n-

ity maturation, a process involving cycles 

of proliferation, mutation, and selection, 

which results in a population of B cells car-

rying receptors with higher affi nity for the 

pathogen than those found in naïve B cells. 

To understand this process, we wish to 

measure how the rates of proliferation and 

death of B cells are infl uenced by the affi n-

ity of the B cell receptor for antigen. One 

experimental means of measuring prolifer-

ation is the tracking of BrdU incorporation 

by B cells. BrdU is a synthetic thymidine 

analog that gets incorporated into a cell’s 

DNA during the S phase of the cell cycle. 

Antibodies against BrdU that are conju-

gated to fl uorescent markers can be used 

to label these cells, so that this evidence of 

cell division can be quantifi ed using fl ow 

cytometry.

In this problem set, you will develop 

and apply an ordinary differential equation 

(ODE) inverse model of BrdU labeling to 

estimate proliferation rate. The experimen-

tal data are adapted from a mouse study (9). 

In this study, a mouse was immunized and 

BrdU dynamics were observed at 4, 8, 24,

and 72 hours after the start of BrdU injec-

tion on day 13 post infection. We will as-

sume that BrdU labeling is continuous over 

the course of the experiment. The data are 

given in Table 1.

The model to describe BrdU labeling 

(Fig. 1) is defi ned by two cell populations: 

Fig. 1. Schematic model of BrdU cell la-
beling experiment. The model has two cell 
populations: unlabeled (U) and BrdU-labeled 
(L). The proliferation rate (p), and the death 
rate (d ) are the same for unlabeled as for 
labeled cells. There is an infl ux of unlabeled 
cells (s) originating from lymphatic sources. 
The effect of neglecting this cell source can 
be examined by enforcing s = 0 in the model 
(see exercise 6 for details).

p

p

d

ds

Populations:
U−Number of unlabeled B cells

L−Number of BrdU−labeled B cells 

Dynamic parameters:
p−Rate of proliferation (per hour)

d−Rate of death (per hour)

s−Rate of inflow of cells from their source in

     the primary lymphatic organs (cells per hour)
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unlabeled (U) and BrdU-labeled (L). When 

an unlabeled cell or a labeled cell prolifer-

ates, it becomes two labeled cells. The pro-

liferation rate (p), and the death rate (d) are 

assumed to be the same for unlabeled as for 

labeled cells. There is also an infl ux of un-

labeled cells (s) originating from lymphatic 

sources. 

You will be editing several MATLAB 

functions, but can call “run_excercise.m” 

to run all the parts of this lab.

1. Translate the model above into a set of 

ordinary differential equations. This model 

should be inserted into the MATLAB fi le 

“BrdUlabel.m” and replace the current 

simulation of asexual reproduction. To 

make this model work, you will also need 

to update the vector Yin and uncomment the 

lines following the call to ode45. Note that 

we assume that labeling is at steady state. 

We have illustrated this by forcing the rate 

of death (d) to be equal to the two source 

rates (i.e., d = p + s).

2. Fit the model to the experimental data 

above, using parameters from the literature 

as your starting point. This can be accom-

plished by uncommenting the lines related 

to exercise 2 in “run_excercise.m,” and 

editing the initial parameter values (xo) in 

“BrdUfi t.m.”

3. We will next modify the fi t by ac-

counting for the varying experimental 

error at different time points. First, un-

comment the lines related to exercise 

3 in “run_excercise.m.” Next, create a 

copy of the fi le “BrdUfi t.m” and call it 

“BrdUfi t_weighted.m.” In this new fi le, 

change the error calculation (e) so that it 

now fi ts the data using a weighted least-

squares error function. The standard devia-

tions for each point are given in Table 1 and 

will be passed to the new function in the 

second column of the variable fl .

Consider your parameter estimates from 

the optimization in step 3. How does this 

compare with the ranges you found in the 

literature?

4. We double-checked our lab notebooks 

and discovered a clerical error. The actual 

fraction of B cells labeled is as in Table 2 

(SD and sample size are unchanged) .

What are the new parameter estimates? 

Are these more in line with rates found in 

the literature?

5. In the MATLAB fi le “run_exercise.m,” 

uncomment the lines related to exercise 5 

on bootstrapping and run them for one hun-

dred rounds (B = 100). Suggestion: Start 

with B = 10 while you are debugging. Cal-

culate and plot confi dence intervals for the 

model parameters by using the percentile 

method and by editing the assignments to 

the variables sc and pc in “run_exercise.m.”

6. Does including the infl ux of cells 

(para meter s in the model) provide a sta-

tistically signifi cant better fi t to the data? 

To check this, you will create a version 

of “BrdUlabel.m” without infl ux of cells 

(the parameter s will be 0) and compare 

the two models (model 1 with infl ux as 

above, model 2 without infl ux using s = 0) 

using an F-test. To carry this out, fi rst un-

comment the lines related to exercise 6 in 

“run_excercise.m.” Next, create a copy of 

the fi le “BrdUfi t_weighted.m” and call it 

“BrdUfi t_weighted_s0.m.” In this new fi le, 

fi x the value of s to be 0. Next, edit “run_

excercise.m” to use the correct degrees of 

freedom (dF).

7. Print out the fi nal version of your 

fi ve pieces of code (“run_exercise.m,” 

“BrdUlabel.m,” “BrdUfi t.m,” “BrdUfi t_

weighted.m,” and “BrdUfi t_weighted_s0.m”) 

and the output of the full running of all of 

the stages in “run_exercise.m.”
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Slides. Development of Models II: 

Model Fitting and Error Estimation

Problem set. MATLAB code. Four 

MATLAB programs for analyzing BrdU 

labeling to determine the rates of cell pro-

liferation and death for B lymphocytes.

Problem set answer key  is available 

upon request. MATLAB code. Six MAT-

LAB programs.
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