
 

 

 
Abstract— Networks are amongst the most common tools to 

describe interactions in a spatial form. One failing of networks is 

that often there is little differentiation between the links of 

potential interactions and those that are actually active in a 

specific time or space. In this paper, we aim to show how spatial 

organization of a network of potential interactions effect the 

pattern formation and reproducibility of sub-patterns in the 

network.  We further show that even a short memory of the path 

taken can radically effect the network characteristics and 

placement of the most common modules.  

While memory helps the reproducibility of some dynamic 

patterns by creating a bias in the direction of learned patterns, 

the spatial organization does this by limiting the individual 

stochasticity. In both cases these forces increase the probability of 

a pattern to recur. We see that memory effects are highly 

dependent on the connectivity of the network. In high 

connectivity networks memory cannot effect the results much. 

This makes sense when the connectivity is seen as a measure of 

the stochastic potential of the network, e. g., if there are many 

connections from a node, then a memory remembering a specific 

path passing through that node will not create much bias in the 

directional preferences.  

Many real networks are sparse. In light of this observation and 

our confirming simulation results,  we may conclude that there 

should be a connectivity constraint for a network system to be 

able to use memory to create specific sub-modules in its network 

of potential interactions. 

I. INTRODUCTION 

Networks are  a convenient way to describe systems that 

consist of many interacting parts such as protein-protein 

interaction (PPI) or social interaction networks. By abstracting 

its components as nodes and the nature of interaction 

(directionality, weightiness, etc.) between them as edges, a 

system can be studied structurally and dynamically within the 

paradigm of network science at the whole-system level. A 

network model may represent a purely Euclidian spatial 

system such as the network of streets in a urban grid. For a 

city, nodes will mean intersection and links to routes between 

them if  they exist. In such a system all the spatial relationship 

among the parts are abstracted to the network. On the other 
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hand, many real non-Euclidian systems are still studied as 

networks by using the language of spatiality (shortest/average 

distance, diameter, etc.). We can think those systems too 

having spatiality, though non-Euclidian, in the sense that 

interactions of their parts are conditioned by their relative 

positions on the network, that is to say, it is a spatiality of 

network not the real system described by the network. Though 

there are many promising studies [1], [2], [3] and [4] for 

identifying the structure of networks (connectivity 

distribution, community structure, motif patterns, etc.), most 

do not consider the dynamical aspect of networks [5]. One 

particular failing of network studies is that often there is little 

differentiation between the links of potential interactions and 

those that are actually active in a specific time or space. 

Networks are generally considered as static structures in 

which the disparate temporal and spatial contexts are 

collapsed into one set of network interactions. Instead, this 

static structure could by thought as the underlying network of 

potential interactions on which multiple changing sub 

networks evolve. For example if we look  at the spatio-

temporal dynamics of protein interactions, we can turn all 

potential interactions as a network whose nodes stand for the 

proteins and edges for the putative interaction [6], [7] and [8]. 

But again the challenge is to find a way to describe the protein 

interaction patterns in the specific spatio-temporal order 

exhibited physiologically at a given time by relating node 

level stochasticity to the network level behavior. Till now 

much attention has been focused to identify the structure of 

real networks and it has been shown that many real networks 

are better described by scale-free and community structures 

(including hierarchical) than random networks [4], [5] and [9]. 

But random networks (Erdös-Renyi networks) are still 

important as statistical benchmarks for determining other 

networks' "unusual" properties. Motivated by the challenges to 

the dynamical analysis of networks given above and by the 

importance of these structures, we developed an algorithm to 

simulate the dynamics of movement on random, scale-free and 

hierarchical networks. For this, we defined an abstract entity 

moving metaphorically on the networks with respect to some 

stochastic rules and analyzed the paths it traces. We 

considered the paths as the information flow regarding 

sequential nodal interaction. For example, for a protein 

interaction network, the path can be said to describe the 

protein interactions in temporal order. Interaction units of 

many real networks have a kind of memory capacity. Neurons 

that fire recurrently strengthen their signals. Immune co-

interactions strengthen on secondary infection and even intra-

cellular (protein) signaling networks, are produced more 

readily on secondary application of stimulus or stress, 
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implying a memory capacity inherent to signaling processes. 

Thus, we also assigned a memory capacity s to the entity that 

enables it to remember its last s steps (with s being << 

network size) and increases the probability of these steps 

being taken in the same temporal order if encountered. 

We designed the simulations so as to give results that enable 

us to compare different network dynamics in terms of network 

topology, average connectivity and memory. Different 

memory cases are compared for the same network architecture 

and connectivity. We see that the addition of memory has a 

great effect on both the number of appearance of paths during 

simulation and continuity of some learned paths (consecutive 

reproducibility of them).  However, these effects are highly 

dependent on the connectivity of the network. If the 

connectivity is greater than the memory size it highly degrades 

the effects of memory (although not completely). Lowering 

the connectivity (filtering more strictly) has a great effect on 

all results for all types of networks. The low connectivity is 

much more efficient for the reproducibility of the paths 

especially in the memory cases. This makes sense when the 

connectivity is seen as a measure of the stochastic potential of 

the network, e. g., if the entity has many directional choices, 

then its remembering a specific path will not create much bias 

in the directional preferences. 

II. METHODS 

Network Parameters. 

In this study, we simulated the dynamics of artificial networks 

with 1000 nodes connected with either a random, scale-free or 

hierarchical architecture [10], [11] and [12].  For each network 

type we simulated a low (k~ 3.5) and high (k~ 15)  

connectivity example. We studied the movement of single 

entity on these networks. The entities has 3 levels of memory 

and could remember either their last 10, 5 or 0 steps. Each 

condition was run twice for 150,000 entity steps and then 20 

times for 40,000 steps.  

Creating Networks  

Random Network - In random networks each node is 

connected to other nodes randomly with an average 

connectivity of  . We create networks with two levels of 

connectivity – low, k=3.5 and high k=15. The degree 

distribution for a random network is normal-like. i.e. the 

network has a characteristic degree and there are no highly 

connected nodes (or hubs) [3]. To satisfy these conditions, we 

developed an iterative algorithm that at each step creates links 

between nodes such that no node will have connectivity lower 

than          or higher than         . With amp (or 

amplitude) being the maximal range between the highest and 

lowest connectivity in the network. We took         for 

our simulations, which meant that the connectivity of any 

node in the network would be between          .  

Scale free Network In a scale-free network, the probability of 

any selected node to have   connections is given by           where      is the probability for the node to have   

connections,   is the Riemann's zeta function (a normalizing 

constant),   is the connectivity and   is the degree exponent 

which is a characteristic value for a given network.   is 

generally between           for many biological and social 

networks [1], [3], [13] and [14]. The minimum and maximum 

connections a node may have in our algorithm were assumed 

to be   and    , respectively, where N is the total node 

number in the network. After entering the degree exponent     

our algorithm uses the following mathematical methodology 

to calculate first the Riemann's zeta function and then the 

probability density of connectivity for a given degree 

exponent. 
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For a given degree exponent ( ) and calculated zeta function 

( ), the probability density vector (pdv) (
                        ) for 

the connectivities was obtained. Then the connectivity of each 

node was determined iteratively according to the following 

probabilistic equation [15] and [16]:  
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Where    is the connectivity of the     node of network,      

is the     element of the pdv,      is the sum of all the 

elements of pdv and   is a random variable drawn from 

uniformly distributed unit interval. We continue to create the 

network we reach a connectivity distribution corresponding to 

the calculated probability density vector. To verify the 

network structure we ranked the nodes by their connectivity 

and obtained a decaying power law graph ( =1.85 for high 

connectivity graph and  =3.65 for low connectivity graph) [1] 

and [17]. 

Hierarchical Network – We considered hierarchichal networks 

to be those that had ‘communities’.  We defined a community 

as a group of nodes whose connections in the community are 

much denser than the connections to different communities 

[1]. Every network had one central community and two 

peripheral ones. Centrality of a community meant it was 

connected to all of the other communities in the network [10] 

and [11] while any two non-central communities were 

connected to each other only through the central one. We 

assumed that intra- and inter-community connections were 

random with the approximate average connectivity of    and   , respectively. To maintain hierarchical structure   was >>   . We set their values at k1= 21,  k2 =6 for high connectivity 

and k1=4,  k2=2 for low connectivity. For a given community 

number,   ,    and amp values, our algorithm first allocates 

the nodes to the communities randomly and then connects the 

nodes of the same community as in the random networks. 

After this step, non-central communities are connected to the 

central one so as to give an average connection number of    

between all three communities. Since the hierarchical network 

is, in a way, a random network, its degree distribution is again 
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normal-like with no hubs [11].In all three network types no 

node has a connectivity of less than 2. 

Using a hybrid Gillespie algorithm to simulate movement. 

To simulate the movement of the entity in the network at 

certain probabilities determined by its memory and the 

network connectivity we used a stochastic simulation 

algorithm originally developed to simulate time evolution of a 

chemical reaction system [15] and [16]. We consider the 

directions in our system as corresponding to the reactions in 

Gillespie's original system. There is an important difference 

between the original algorithm and one modified and used 

here that whereas the number and types of possible reactions 

in a chemical system remain constant during the process, they 

vary from one step to another in our network system since at 

each step the set of potential directions changes. According to 

our modified Gillespie algorithm, at each step a probability 

distribution function for the directions must be constructed. 

After this, the next direction for the entity is chosen randomly 

from the constructed distribution function as follows: take   as 

an integer that satisfies the following equation [15] and [16] 
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where   is a random number drawn from uniformly distributed 

unit interval and    and    are the sum of all the elements of 

frequency (tendency) vector and     element of it, 

respectively. The number of   will be the direction (reaction) 

number from the overall frequency vector. All the nodes 

traced by the entity throughout the simulation were recorded 

in temporal order and analysed in terms of several 

connectivity  measures as explained in the results section.    

 

Rules for movement and memory in the network 

At each simulation step, the entity changes its position to a 

neighbor node (a node linked to the original node). To prevent 

the entity from being trapped in a very short circuit, the entity 

will never go back to its previous node. Without memory the 

entity is likely to go in any direction, as all the potential 

directions will have an equal probability of being taken. With 

a memory of size s, the entity remembers the last s nodes in 

temporal order and if it steps back into a part of the path that is 

in memory it tends to retrace this path in the same order. 

Therefore, the memory creates a bias in the directional 

preference of the entity. To quantify the effect of memory we 

defined a parameter alpha that increases the probability of a 

direction that is already memorized. In our simulation, alpha 

was taken as 1/1000 meaning that a memorized direction will 

be 1000 times more probable than an un-memorized one. In 

our study, we simulated both     (no memory),     and      cases.  

For a given network type and connectivity, we used the same 

network for simulating different memory cases. At each 

simulation, we have a network and an entity moving 

stochastically on that network. 

III. RESULTS 

We analyzed the structure of the paths visited by the entity and 

attempted to identify to what extent the overall structure of the 

network on which they moved, and the extent of their memory 

influenced these structures.  

Memory causes  a greater regularity of  path structure 

To characterize the regularity of paths at different path lengths 

we characterized each network by all the possible sub-paths of 

length or window size  (in our case window size = 5 or 10). 

We then counted how often each such pattern occurred. In 

Table I and II, the results for average connectivity       and      are given, respectively, subdivided by network 

topology and memory. Here, the max value gives the 

maximum recurring number of a specific sub-path throughout 

the simulation whereas the mean value gives the mean 

recurring number of each sub-path type. Maximum 

consecutive retracing number gives the max retracing number 

of a sequence of size 5 traced consecutively. This number 

measures the capability of the memory within a network to 

enable the entity to keep its learned path without fail. 

Movement in even the less connected network is highly 

stochastic and even in the low connected networks only a 

relatively low number of paths are retraced (Max ~ 2800 out 
∑      
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of 150,000). However, it is clear that even so memory has a 

significant effect on reproducibility of paths as the mean 

retraced path number grows by up to 2 to 17 fold (Table I 

window 10) and the Max. retraced path number by between ~ 

80 and ~ 250 times. Interestingly, while the longer memory  of 

10 helps to raise the mean path number, the longest Max path 

number is at memory 5 in all network types. 

Raising connectivity raises the stochasticity of traveling in the 

networks and degrades the reproducibility of movement both 

with and without memory, dropping 5 to 60 fold in numbers. 

Despite this it is still quite clear in Table II that entities with 

memory will show more recurrence by 40-150 orders of 

magnitude than those without (Table II). 

 

Memory and structure of the complete network effect the 

relative connectivity of the visited network 

To understand the interactive effects of the memory and 

topology on the network dynamics, we derived a plot that 

shows the relations of the most visited nodes and positions of 

them in the network. For this, we constructed the sets of the 5, 

10,..., 100  most visited nodes (in total, we had 20 sets of 

nodes). Then, we calculated the average connectivity and 

relative connectedness of each set and plotted these values 

with respect to most visited node sets. The relative 

connectedness (in %) of a set is a measure of how coherent 

and interconnected a set of nodes is. We defined it by the 

following equation: 
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where      is the number of observed direct  links between the 

nodes in the set and   is the number of nodes in that set. To 

make the calculation clear, see Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   In the figures (Fig. 2, 3 and 4), we see the similar patterns for 

all the networks. When there is no memory, the entity prefers 

to wander within the high average connectivity groups (notice 

the average connectivity as a monotonically decreasing 

function of mostly visited nodes). In no memory cases there is 

always a good correlation between the mostly visited nodes' 

average connectivity and relative connectedness. But the 

memory disturbs this correlation possibly by driving the entity 

into a coherent group of nodes (compare blue with red and 

black with green curves in Fig. 2, 3 and 4). The memory 

works best in a group of nodes that is relatively well 

connected but does not have a high average connectivity (blue 

to red curves each case). 

By limiting the movement potential of the entity, the average 

connectivity of the network acts as a filter for the noise 

(randomness). It is very clear from the tables that lowering the 

connectivity (filtering more strictly) has a substantial effect on 

all the results for all the networks (compare the results for no 

memory cases of the networks with different connectivity). 

The low connectivity is much more efficient for the 

reproducibility of the paths even for no memory cases. 

However, with memory the effect is even more dramatic and 

we see that most highly visited nodes are highly coherent (i.e. 

have high relative connectedness). 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            
    
 
Fig. 2.  Relative connectedness in % (full lines) and average connectivity 

(brocken line) of nodes ranked by times visited over entire simulation in 

random networks. Notice that the memory always decreases the average 

connectivity of the most visited sets and increases their relative 

connectedness. Blues: k=3.5, s=0, Reds: k=3.5, s=5, Blacks: k=15, s=0 and 

Greens: k=15, s=5. 

 

 
 

Fig. 1.  For the given network of N = 10, the relative connectedness of the 

chosen set of 5 nodes (those connected to one another by dashed links) is                  . N is the total number of nodes in the network. 

 

  

  
Fig. 3.  Relative connectedness in % (full lines) and average connectivity 

(brocken line) of nodes ranked by times visited over entire simulation in scale 

free networks. Notice that the effects of memory are lost at high connectivity. 

Blues: k=3.5, s=0, Reds: k=3.5, s=5, Blacks: k=15, s=0 and Greens: k=15, 

s=5. 

 



 

 

Moreover, this high relative connectedness is not directly  

connected to average connectivity as it is in the no memory 

case. In high connectivity networks the memory cannot effect 

the results as much as it does in low connectivity networks 

with and without memory cases (compare black with green 

curves in Fig. 2, 3 and 4). This is especially true for scale-free 

networks possibly due to the fact that the memory cannot keep 

the entity in sub-networks when there are very huge hubs (the 

size of the biggest hubs in low and high connectivity scale-

free networks are ~100 and ~900, respectively). From Fig. 3, 

we can additionally say that in high connectivity networks the 

average connectivity of the sub-regions is the main 

determinant for the entity's tendency to re-visit a site during 

the simulation, namely, the entity is attracted to the regions 

with high average connectivity and memory does not have 

much influence.  

As stated above, memory is more efficient in a group of nodes 

that is relatively well connected but has a low average 

connectivity (see Fig. 2, 3 and 4). In high connectivity 

networks it is less probable to have this kind of groups, 

especially given the small network size of our simulation. If 

the network average connectivity is greater than max group 

average connectivity (         ) then adding a link to the 

network will less probably increase relative connectedness 

though it certainly does the average connectivity. To prove 

this numerically, we simulated a network evolution model and 

calculated a normalized ratio of the relative connectedness of 

randomly chosen sets of 5 nodes to the average connectivity of 

the entire network. In this way we show how the relative 

connectedness changes with respect to the average 

connectivity. We ran the simulations 1000 times and used the 

mean values of the ratios for the plot. We also added    

standard error curves to the plot. Fig. 5 shows that the ratio 

quickly reaches a steady-state value of 1 especially after the 

condition             is satisfied. To us, this is the 

reason why in high connectivity network it is very hard to find 

a group of nodes with high relative connectedness and low 

average connectivity in which memory would drive the entity 

to stable patterns. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also analyzed the visiting frequencies of the most visited 

nodes (for how long the most visited nodes are visited) to 

understand the corresponding biases in the temporality. To do 

this, we plotted the total fraction of nodes visited (as % of 

simulation time) with respect to the number of most visited 

nodes. When there is no memory, the bias in the temporality 

can completely be attributed to the network topology. All the 

time, we saw the most and least biased temporality in the 

scale-free and random networks. And interestingly, with 

increased connectivity the bias in the random network was 

lowered whereas it was dramatically raised in the scale-free 

network. In each case, the memory discernibly increased the 

bias in the temporality except in the high connectivity case of 

scale-free network implying that the larger hubs prevent the 

formation of sub-networks in which the memory would drive 

the entity. What was peculiar to the hierarchical networks was 

that only in those networks under memory cases there were 

some nodes left unvisited at all (see Fig. 6). We can interpret 

this as stemming from the community structure of the 

hierarchical networks (as sub-networks, communities can keep 

the entity longer by being relatively less connected to the other 

parts of the network).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 
 

Fig. 5.  The ratio of relative connectedness of randomly chosen 5 node-group 

to its average connectivity as a function of its connectivity (the dashed curves 

represent ±2 standard errors). Notice that the band between the error bars 

quickly reaches a normalized steady-state value of 1 especially till the 

average connectivity reaches the max connectivity of the group that is 4.  

 

 

 
 
Fig. 4.  Relative connectedness in % (full lines) and average connectivity 

(brocken line) of nodes ranked by times visited over entire simulation in 

hierarchical networks. Blues: k=3.5, s=0, Reds: k=3.5, s=5, Blacks: k=15, s=0 

and Greens: k=15, s=5. 

 
 

Fig. 6.  Cumulative visiting percentage (blue) and average group connectivity 

(red) with respect to the ordered groups of most visited 5-nodes for hierarchical 

networks with k=3.5, s=0 (left) and k=3.5, s=5 (right). Notice that there is 

already a bias, though very slight, in the visiting numbers without memory (left 

plot). This bias comes from the spatiality of the networks implying that the 

spatiality is an independent factor effecting the dynamics. Memory creates a huge 

bias as seen in the rightside plot. Blue scatters reach the steady state at around 

170. 5-node group meaning that there are almost 30 groups (150 nodes) left 

unvisited. We analyzed these nodes and saw that only 1 of them belonged to the 

central community. Two communities were never visited at all, whereas 76% of 

another community was left unvisited.        

 



 

 

IV. DISCUSSION AND CONCLUSIONS 

Many real networks (biological, social, etc.) are sparse [18]. 

For instance the average connectivity of the protein interaction 

network of S. cerevisiae is 2.12-2.9 whereas the total protein 

number of the network is 2115 [19]. In light of this 

observation and our confirming simulation results we may 

conclude that there should be a connectivity constraint for a 

network system to be able limit the agent level stochasticity. 

In such an instance it appears that even a very rudimentary 

memory, on its own without goals or more specific context, 

can give rise to a network dynamics that is less stochastic then 

the network structure alone would predict. Real networks 

seem to have evolved so as to have low connectivity to act as 

spatial filter on the highly stochastic input data. As a result, we 

would suggest that memory and spatial organization act on the 

network dynamics in their own manners and cannot be 

reduced to each other. 

Also, there is seemingly always some sort of memory inherent 

to self-organizing systems including PPI and road networks. 

Though the memory aspect of road networks is self-explaining 

(if a city dweller knows a road better then we can expect 

him/her tending to prefer that road), it is more ambiguous and 

therefore interpretative to show the memory in the PPI 

interaction networks. As discussed above, the memory drives 

the entity into some sub-networks. Though the sub-networks 

are the parts of the network structure (they are not 

dynamically formed but they are already there before entity 

dynamics), it is the memory that enables the entity to interact 

the network structure giving rise for the sub-networks to have 

some emergent functionality in the network dynamics. As an 

example, the functional sub-networks emerged from the 

random network dynamics are given in Fig. 7.        

In essence it appears that memory causes the entity to trace 

and thus identify specific communities. While community 

identification is by no means new  [10], we build here a first 

version which is based on an internal ‘bottom up’ sweep of the 
network. More generally we believe that our modeling 

paradigm presented here could provide one of the early steps 

for dynamical approaches to describe many real networks and 

how individual entities or information flow along them.  
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Fig. 8. The sub-networks of the most visited 15 nodes with and without 

memory cases for random networks with high connectivity (k=15, left: s=0, 

right: s=5). For numeral and color codings see Fig. 8. Though the memory is 

still effective on the identification of some specific communities (sub-

networks), these sub-networks however are less tightly connected than the 

ones found in low connectivity networks (compare in-community link 

numbers of k=15 and k=3.5 cases, that is, 6 and 14).     

      

Fig. 7. The sub-networks of the most visited 15 nodes with and without 

memory cases for random networks for with low connectivity (k=3.5, left: 

s=0, right: s=5). The first, second and third numerals show the number of 

other connections the node has to other nodes (outside the top 15), the 

shortest distance back to top 15 and to the least visited 15 nodes. The red, 

blue and orange circles stand for the first, second and third most visited 5-

node groups. Notice how memory ‘leads’ the entity to the islands of nodes 
with high intra-connections and low outer connections, i.e. to specific 

communities.  
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