
Efficient Approximation of Labeling Problems
with Applications to Immune Repertoire Analysis

Yusuf Osmanlıoğlu∗, Santiago Ontañón∗, Uri Hershberg†, Ali Shokoufandeh∗

{osmanlioglu, santi, ashokouf}@cs.drexel.edu , uri.hershberg@drexel.edu
∗Dept. of Computer Science, Drexel University, Philadelphia,PA.

†Dept. of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia,PA.

Abstract—Labeling problems are finding increasing applica-
tions to optimization problems. They usually get realized into
linear or quadratic optimization problems, which are inefficient
for large graphs. In this paper we propose an efficient primal-dual
solution, MLPD , for a family of labeling problems. We apply this
algorithm to the analysis of immune repertoires, and compare
it against our baseline approach based on refinement operators.
We provide a comparative evaluation both in terms of accuracy
and computational efficiency with respect to the baseline model,
as well as to quadratic optimization.

I. INTRODUCTION

Graph matching is a fundamental problem in computer
science having real life applications in various domains of
structural pattern recognition. Given two graphs G and H ,
determining an exact match among the nodes is known to
be computationally intractable. Specifically, subgraph isomor-
phism which asks whether G contains an induced subgraph
H ′ that is isomorphic to H , is a problem known to be NP-
complete [1]. Graph isomorphism, which is a special case
of the problem that is neither known to be polynomial time
solvable nor NP-complete, is recently shown to be solvable
in quasipolynomial time [2]. Hardness of finding and exact
solution to the problem led the research to focus on inexact
matching since early 80s [3].

We tackle inexact matching by utilizing metric labeling, a
well known problem of combinatorial optimization [4]. Given
an object graph and a label graph with pairwise relations
among their nodes, the goal of metric labeling is to assign
object nodes to label nodes by minimizing a quadratic cost
function. Solving the quadratic optimization problem provides
two outcomes. First is a mapping between individual nodes
which has applications such as object tracking. Second is
the value of the objective function which can be used as
a similarity score between the two graphs for classification
tasks. In this paper, we use the latter for a labeling task in the
biomedical domain.

Solving the quadratic programming formulation of metric
labeling becomes impractical as the size of graphs increase.
Utilizing the linear programming formulation of the metric
labeling [5], we propose a primal dual approximation algo-
rithm, MLPD , for the problem which is several orders of
magnitude faster. We compare this approach against both a
quadratic programming formulation, and an approach based
on refinement operators. The refinement operator approach

has shown to provide good results in the past for assessing
the similarity between structures in representation formalisms
such as typed feature structures [6] or Description Logics [7].
In this paper we provide an instantiation of this approach for
labeled graphs, which serves as a baseline for MLPD . We
present an evaluation in the domain of immunology both in
terms of labeling accuracy and running time.

The rest of the paper is organized as follows: §II gives an
overview definitions. In §V, we define the classification task
over B-cell mutation trees. §III and §IV provides the details
of the approximation algorithm for the metric labeling and the
refinement based approach. Next, we present the experiments
in §VI and conclude the document in §VII.

II. BACKGROUND

Inexact graph matching is a well studied problem in the
theory community with several approaches including tabu
search [8], error-correcting graph matching [9], graph edit
distance based matching [10], and convex optimization for-
mulations [11]. Another way to treat the problem is by
approaching the inexact matching as a classification task. A
fundamental set of problems in computer science deals with
classifying a set of objects into clusters by minimizing a
cost function. For problems such as multiway cut problem of
Dahlhaus et al. [12] and 0-extension problem of Karzanov [13],
the cost function can be as simple as counting the separation
cost of the related objects. In other settings with the prior
knowledge about cluster labels, the cost function also accounts
for the assignment cost of an object to a specific cluster. The
quadratic assignment problem [14] is an example of the latter
with its various flavors. In its original form as devised by
Koopmans and Beckmann, it can be stated in the context of
finding optimal locations to facilities given two disjoint sets
L and P of cardinality n. The main goal is to find a bijection
between the two sets by assigning facilities to the locations
with minimum assignment cost while minimizing the cost of
transportation between facilities. Metric labeling problem of
Kleinberg and Tardos [4] is a special case of the quadratic
assignment where the two sets need not be of same size and
several elements of the first set can be assigned to the same
element of the second set. Specifically, given a set of objects P
and a set of labels L with pairwise relationships defined among
the elements of both sets, metric labeling assigns a label to
each object by minimizing a cost function involving both

separation and assignment costs. Separation cost penalizes
assigning loosely related labels to closely related objects while
assignment cost penalizes labeling an object with an unrelated
label. A natural quadratic programming formulation for the
metric labeling problem is as follows:

min
∑
p∈P
a∈L

cpa · xpa +
∑
p,q∈P
a,b∈L

wpq · dab · xpa · xqb

s.t.
∑
a∈L xpa = 1, ∀p ∈ P

xpa ∈ {0, 1}, p ∈ P, a ∈ L

where, cp,a represents the cost of labeling an object p ∈ P
with a label a ∈ L, wp,q is the strenght of relation between
objects p, q ∈ P, and da,b is a distance measure on the
set L of labels. In order to eliminate the quadratic term in
the separation cost, Kleinberg and Tardos used embedding of
label graph into a special tree structure, called hierarchically
well-separated trees (HST) [15], and measured the distances
between labels over the tree albeit with the cost of O(log n)
distortion. Although, there has been ample studies on solving
classification problems using labeling methods, this work was
the first study that provided a polynomial-time approximation
algorithm with a nontrivial performance guarantee.

Although the linear programming (LP) formulation of
Kleinberg and Tardos is very elegant in using the HST
embedding for overcoming the quadratic term in the objective
function, time it takes to embed the object graph into an HST
and the large number of constraints in the resulting program
limit the scalability of the method for large graphs. Chekuri
et al.[5] introduced another LP formulation for the metric
labeling which overcomes both problems while having the
same distortion guarantee.

min
∑
p∈P
a∈L

cpa · xpa +
∑
p,q∈P
a,b∈L

wpq·dab · xpaqb

s.t.
∑
a∈L xpa = 1, ∀p ∈ P (1a)∑
b∈L xpaqb = xpa, ∀p 6= q ∈ P, a ∈ L (1b)

xpaqb = xqbpa, ∀p 6= q ∈ P, a, b ∈ L (1c)
xpa, xpaqb ∈ {0, 1}, ∀p, q ∈ P, a, b ∈ L

Since integer linear programs (ILP) are known to be NP-
hard to solve, a feasible solution to (1) can be obtained by
first relaxing the integrality condition of integer program and
then solving the resulting LP. Fractional results of the LP are
then rounded to discrete values with an auxiliary rounding
procedure. Thus, it is necessary to find a suitable rounding
algorithm with a bounded distortion guarantee.

Goemans and Williamson [16] introduced the primal-dual
approximation scheme for finding approximate solutions to
many combinatorial optimization problems that can be mod-
eled with ILPs. Their method is a modified version of the
classical primal-dual algorithm in that complementary slack-
ness conditions are relaxed, i.e., only primal complementary
slackness condition is imposed while the dual complementary
slackness is relaxed. The algorithm achieves an approximation

to the original problem and a feasible solution to its dual
simultaneously. The main advantage of using modified primal-
dual method over classical LP relaxation followed by rounding
is twofold. First, it runs faster while guaranteeing a bounded
distortion rate. Second, if the data changes during the course of
algorithm running, the algorithm can recover by updating only
the newly violated constraints without the need for solving the
problem from scratch.

III. APPROXIMATION ALGORITHM FOR MATCHING

Taking shortest path metric as the distance measure between
the nodes, problem of finding a similarity measure among
graphs can be treated as an instance of metric labeling.
Specifically, given two graphs P and L, distance function
d : L × L → R denoting the shortest path between nodes of
L, weight function w : P × P → R defined as the reciprocal
of shortest path distance between pairs of nodes in P, and
an assignment cost function c : P × L defining a measure of
similarity among pairs of nodes of P and L, we can restate
the problem as labeling nodes of P with nodes of L. Solving
the metric labeling formulation in (1) with this setup provides
a matching between individual nodes along with a similarity
score between the two trees.

Due to its efficiency over standard approach for solving
metric labeling which consists of solving the LP and then
rounding the fractional results, one would be interested in a
primal-dual approximation algorithm for the metric labeling
problem. Although Komadakis and Tziritas [17] proposed a
primal dual algorithm for the problem, the LP formulation
of the metric labeling that they used does not account for
the constraints of type (1c). We propose another primal dual
algorithm using the LP formulation (1). We first present the
dual problem as follows:

max
∑
p∈P

yp

s.t. yp −
∑
q∈P

ypaq ≤ cpa, ∀p 6= q ∈ P, a ∈ L (2a)

ypaq ± ypaqb ≤ wpq · dab, ∀p, q ∈ P, a, b ∈ L (2b)
yp, ypaq , ypaqb unrestricted,∀p, q ∈ P, a, b ∈ L

Note that variables of type ypaqb appears as a summation and
a subtraction in (2b) type of constraints which accounts for the
balancing constraints in (1c). Strictly following the primal dual
method of G&W, which enforces dual feasibility throughout
the algorithm, would require us to make assignments in tuples.
Specifically, once an object is assigned a label, another object
will be required to get assigned with the same label. Algorithm
will thus assign two objects at each phase of its iteration,
resulting in a poor overall assignment. This leads us to modify
G&W primal dual method by relaxing the dual feasibility
condition for the constraints of type (2a) which previously
became tight.

An efficient primal-dual approximation algorithm for the
problem, denoted MLPD , is presented in Alg. 1. The al-
gorithm starts with initializing assignment variables xpa, set

Algorithm 1 MLPD : A primal-dual approximation algorithm
for the metric labeling problem

procedure ML-Primal-Dual(P,L)
1: ∀p, q ∈ P, a ∈ L : xpa ← 0,O ← P

cpa ← similarity(p, a)
dab ← distanceL(a, b)
wpq ← 1/distanceP(p, q)
φ(p, a)← cpa

2: while O 6= ∅ do
3: Find p ∈ O that minimizes φ(p, a) for some a ∈ L
4: xpa ← 1
5: O ← O \ {p}
6: ∀q ∈ O, b ∈ L \ {a} : φ(q, b) = φ(q, b) + wpq · dab
7: end while
8: return X = {xpa : ∀p ∈ P, a ∈ L}

of unlabeled objects O, and the cost, distance, and pairwise
relation functions c, d and w. It further defines an adjusted
assignment cost function φ where the value of φ(p, a) is
initially set to be the assignment cost of p to a (line 1). At
each iteration of the loop in lines 2− 7, the algorithm makes
an assignment for the object-label pair (p, a) that minimizes
the adjusted assignment cost function φ (lines 3− 4). Before
proceeding to the next iteration, assigned object is removed
from the set O (line 5) and φ function is updated for each
of the unassigned objects by an amount of separation cost
with respect to the recently assigned object (line 6). Algorithm
iterates until no unassigned object node is left.

Proposition 1. Given that |P| = n and |L| = m, running time
complexity of Alg. 1 is O(n2m+m2).

Proof. Initialization phase takes O(n2+m2+nm) time. Each
iteration of the loop resolves one violation of constraint type
(1a) and once a violation gets fixed, it will never get violated
again for the rest of the execution. Thus, the loop is executed
n times, and lines 2, 4, and 5 each take O(n) time. Making
an aggregate analysis for lines 3 and 6, we get O(n2) and
O(n2m) time, respectively. Thus, overall running time of the
algorithm is O(n2+m2+nm+n2m) which is asymptotically
equal to O(n2m+m2).

Remark 1. Alg. 1 is a greedy algorithm since the pair
(p, a) which minimizes the adjusted assignment cost φ(p, a)
is selected for assignment at each iteration.

Remark 2. In Alg. 1, φ(p, a) is not updated for an object
node p once it gets assigned. At the end of the algorithm,
summation

∑
p,a φ(p, a)xpa gives the value of the objective

function in (2) which is equal to the value of the objective
function in (1).

IV. REFINEMENT-BASED SIMILARITY FUNCTION

Recent work [6] has shown that refinement operators [18]
can be used as a general framework to assess similarity
between structured data representations such as typed feature
structures or logical clauses. In this section, we present an

instantiation for this approach to assess similarity between
labeled graphs (the formalism used to represent the data used
in our experiments), which will later be used as a baseline to
compare against MLPD in our experimental evaluation.

A. Refinement of Labeled Graphs

Definition 1 (Directed Labeled Graph, DLG). Given a finite
set of labels L, a directed labeled graph G is defined as a
tuple G = 〈V,E, l〉, where:
• V = {v1, ..., vn} is a finite set of vertices.
• E = {(vi1 , vj1), ..., (vim , vjm)} is a finite set of edges.
• l : V ∪E → L, is a function that assigns a label from L

to each vertex and edge.

For simplicity of notation, given a graph G = 〈V,E, l〉, and
a vertex v ∈ V , we would also say that v ∈ G.

Given two graphs g1 and g2, we say that g1 subsumes g2
(noted g1 v g2), if g2 contains a subgraph that is equivalent
to g1. Formally subsumption is defined as follows:

Definition 2 (Subsumption). Given two DLGs, g1 =
〈V1, E1, l1〉 and g2 = 〈V2, E2, l2〉, g1 subsumes g2 (we write
g1 v g2) if there is a mapping m : V1 → V2 such that:
• ∀(v, w) ∈ E1 : (m(v),m(w)) ∈ E2,
• ∀v ∈ V1 : l1(v) = l2(m(v)), and
• ∀(v, w) ∈ E1 : l1((v, w)) = l2((m(v),m(w))).

When a graph g1 subsumes a graph g2, we will say that
g1 is more general than g2 (or, alternatively, that g2 is more
specific than g1). This follows the intuition that if g1 subsumes
g2, we can construct g2 by adding vertexes and edges to g1
(i.e., making it more specific).

Definition 3 (Anti-unification). Given two graphs g1, and g2,
and a subsumption relation v (which can be any of the ones
defined above), g is an anti-unifier of g1 and g2 (we write g =
g1 u g2) if: g v g1, g v g2, and @g′ A g : g′ v g1 ∧ g′ v g2.

In other words, an anti-unifier of two graphs is the most
specific graph that subsumes both of them. Let us call G to
the infinite set of all the possible graphs we can create using a
set of labels L. The subsumption relation v is a partial order
over these graphs, and thus (G,v) is a quasi-ordered set. This
allows us to define refinement operators, which intuitively are
functions that let us edit graphs by either adding or removing
elements from them to make them more specific (downward
refinement operators) or more general (upward refinement
operators). A downward refinement operator is defined as:

Definition 4 (Downward Refinement Operator). A downward
refinement operator over a quasi-ordered set (G,v) is a
function ρ : G→ 2G such that ∀g′ ∈ ρ(g) : g v g′.

We create a refinement operator for labeled graphs called
ρf . Given a DLG g = 〈V,E, l〉, ρf generates refinements by
performing one of the following four operators: (1) if E = ∅,
it refines it by adding one vertex labeled with a label l ∈ L,
(2) picking a vertex v ∈ V , and adding a new vertex w to the
graph and an edge form v to w, and giving both the new edge

and vertex labels from L, (3) the same thing but making the
edge go from w to v, and (4) adding a new edge between two
vertices in the graph, and giving it a label l ∈ L. Although a
formal definition and proof is out of the scope of this paper,
it can be shown that ρf is locally finite (given a graph, it
generates a finite number of refinements) and proper (given a
graph, none of the refinements it generates are equivalent to
the original graph).

Definition 5 (Refinement Path). A finite sequence of graphs
[g1, ..., gn] is a refinement path g1

ρ−→ gn between g1 and gn
when for each 1 ≤ i < n, gi+1 ∈ ρ(gi).

We will write |g1
ρ−→ g2| to denote the length (# of

refinements) of the shortest path between g1 and g2.

B. Similarity Function

In our previous work [6], we introduced the concept of
refinement-based similarity measures in the context of feature-
terms [19] (a representation formalism used in structured
machine learning and in natural language processing), and
later extend this idea to other formalisms such as Description
Logics [7], and partial-order plans [20]. Here, we extend these
ideas further to directed labeled graphs (DLGs) by using the
refinement operator introduced above.

The intuition of the refinement-based similarity function
presented here is that the amount of information contained in
a graph can be measured by the number of times a refinement
operator needs to be applied in order to generate such graph
starting from the empty graph (g>).

Definition 6 (Anti-unification-based Similarity). Given two
graphs g1, and g2, a refinement operator ρ and a subsumption
relation v, the anti-unification-based similarity is defined as:

Sλ(g1, g2) =
a

a+ b+ c

where a = |g>
ρ−→ (g1 u g2)|, b = |(g1 u g2)

ρ−→ g1|, and
c = |(g1 u g2)

ρ−→ g1|.

Intuitively, this measures the amount of information shared
between g1 and g2 (size of their anti-unifier), and normalizes
it by the total amount of information. The reader is referred
to our previous work [6] for a more in-depth description
and analysis of the anti-unification-based similarity. More-
over, the distance between two graphs can be computed as
1− Sλ(g1, g2), since Sλ is normalized to the interval [0, 1].

V. DESCRIPTION OF THE PROBLEM AND THE DATA

In order to evaluate the proposed techniques, in this paper
we focus on an important biomedical problem, namely the
analysis of immune repertoire diversification and selection.
The adaptive immune response depends on the differentiation
and affinity maturation of B cells. Each of these cells encodes
for a specific B cell receptor. During an immune response,
B cells proliferate, mutate, and die, such that the surviving
B cells have receptors of improved affinity to the disease
that triggers the immune response. Mutant members can be

a

c

b

Tissue:Lung
CAGATCACCTTGAAG...GAGTCTGGTCCT

Tissue:MLN
CAGATCACCCAGAAG...GAGTCTGGTCCT

Tissue:Colon
CAGATCACCCTGAAG...GAGTCTGGTCCT

T to A at position 11

T to C at position 10

Lung
Colon
MLN

Fig. 1. Structure of a sample mutation tree: each node in the tree denotes
an immune cell along with the germline of the cell. Each edge represents a
mutation of a nucleotide at a certain position in the germline. Each of the
cells are color coded according to the tissue they were encountered in.

L

(C,G,47) (A,T,23) (T,C,10)

(G,T,44)

(T,C,75)

(G,C,45) (T,A,11)

CAGATCACCTTGAAG...GAGTCTGGTCCTGATGATAAGCGCTAC...NGCCCATCTCTG

P

(A,T,23) (T,A,10)

(T,A,13)(G,T,47)

Fig. 2. Matching two mutation trees: nodes of the tree P is labeled with the
nodes of the tree L. Note that tissue labels are removed before matching.

associated to their unmutated source and a lineage can be
constructed from their common mutation patterns. Recent high
throughput sequencing techniques enable the acquisition of
sequences which span different tissues and B cell subset types.
We can use the methods described in this paper to test if
these different functional and phenomenological differences
in B cell type relate to the patterns of mutation and selection
described by the shape of the lineage.

An example of one such lineage tree is shown in Figure 1.
Each edge in the tree represents a set of mutations, and each
node contains the set of cells that share such mutation. Each
node in the tree is thus labeled by which tissues they were
found on and the copy number, i.e., the number of cells found
sharing the corresponding mutations. Each edge is labeled with
the specific mutations (only the number of such mutations
is used for the experiments reported in this paper, although
we plan to incorporate more information in our future work).
Specifically, we analyzed 5000 B cell clone lineages of size 3
to 50 nodes, found across up to 7 tissues types (bone marrow,
colon, lung, etc.) selected at random from the a wider set of
immune repertoires of 9 individuals.

The proposed graph matching methods can be applied to
finding similarities between lineage trees due to trees being
special graph structures (see Fig. 2). Adapting the MLPD

to the lineage tree dataset requires defining similarity and
distance functions since the assignments made by the algo-
rithm at line 3 rely on the distance measure dab and the
similarity function cpa. We take the distance of an edge
between two neighboring nodes as the number of mutated
nucleotides. Shortest path distance is then used as the distance
measure between any two nodes in the tree. For calculating

the similarity between nodes, we defined a two-dimensional
feature vector for each node which consists of the copy number
and the depth of a node in the tree. Similarity score is then
calculated as the l1 distance between the two feature vectors.

VI. EXPERIMENTS

This section presents an empirical evaluation of the pro-
posed graph similarity approaches. For each lineage tree, we
generated a ground truth label which we call the tissue flow
(TF) label. The TF label specifies how the cells described
by the lineage tree flow between tissues as they mutate. For
example, if all the cells in the root of a lineage tree were
found in the lung, and the cells in the leaves of the tree where
found in the spleen, the TF label for this lineage tree would
be “lung to spleen”. If the tree were to have additional leaves
containing cells found in colon, then the label would be “lung
to spleen and colon”. The TF is represented by a small tree
where each node is labeled with a tissue or set of tissues (since
some cells might be found in a mixture of tissues).

So, the prediction task is: given a lineage tree (like the one
in Figure 2), predict the TF label in the absence of tissue
labels. Basically, this corresponds to asking the question: are
the mutation patterns (captured by the shape of the lineage
tree) correlated in any way with the tissues in which the
different cells in the lineages are found.

When generating TF labels for the 5000 trees in our dataset,
this results in 1190 different TF labels. Moreover, some of
those labels are very similar. For example, one tree might be
labeled with a TF label “lung to spleen and colon” and the
other with “lung to spleen”. So, in our experiments, we score
each prediction by the similarity (using Sλ) of the predicted
TF with the ground truth. Moreover, since some TF labels are
very uncommon, we also performed experiments by removing
all of those trees from the dataset for which there was less than
a minimum threshold T of 10, 50, 100 or 400 trees sharing
the same label.

In order to evaluate our similarity approaches, we employed
then a k-nearest neighbor (kNN) algorithm using a leave-
one-out procedure. Moreover, all the tissue annotations were
removed from the trees for these experiments, in order to
ensure we are predicting TF and tissue distribution from the
tree structure alone. When using kNN for predicting TF, the
most common label amongst the kNNs is used as the final
prediction.

Results of the experiment with MLPD and Sλ algorithms
are shown in Table I. We compared the results against two
baselines: a random predictor, which picks one of the labels
at random, and the most-common, which predict the most
common label in the training set. As can be seen in Table
I, results improve with higher values of k, meaning that there
is a significant amount of either uncertainty or noise in the
dataset, which higher values of k can compensate for. As a
matter of fact, we observed that results keep improving up to
values of k = 31, after which they plateau, and then drop
quickly to those of the most-common predictor, as expected.
We only report results for k ∈ {1, 11, 31} since it suffices for

0.1

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50

ti
m
e
(m

il
li
se
c)

size of tree (# of nodes)

MLPD
MLQP

Sλ

Fig. 3. Performance comparison of MLPD ,MLQP , and Sλ. Algorithms
are run with pairs of same size trees and results are log scaled.

comparison purposes. Moreover, we also observe that in terms
of classification accuracy, MLPD and Sλ outperform both
of the baseline methods where Sλ performs slightly better.
We also compare MLPD to the algorithm that solves metric
labeling using quadratic programming solver, denoted MLQP .
Due to high computational complexity of the MLQP , we
ran an experiment on a subsampled dataset of 1000 trees.
MLQP achieves accuracy rates of 0.156 and 0.204 for 1 and
31 kNN while MLPD achieving 0.191 and 0.211, respectively.
One would expect MLQP to outperform MLPD since the the
latter is an approximation of the former. We conjecture that
MLQP performs relatively poor due to feature vectors carrying
limited information, which causes assignment cost of unrelated
nodes to be small. Heuristic that MLPD pursues compensates
this inaccuracy of features for obtaining better results. We
expect MLQP to perform better with more descriptive feature
vectors, which we leave as a future work.

Considering the computational cost, Sλ required 9322 min-
utes (over 155 hours) to generate the 5000 × 5000 distance
matrix used in our experiments, whereas the metric labeling
approach required 54 minutes, making the latter method over
150 magnitudes of order faster then the former for the entire
task. Although the tree sizes vary between 3 to 50, majority
of the trees are of small sizes, making the average tree size to
be 6.88. To obtain a detailed timing analysis, we performed
another experiment where we run all three algorithms to
compare trees of same size from 3 to 50 nodes. Fig. 3 shows
the timing measurements in milliseconds where the results are
presented in log scale. While the running time of the MLPD

is less than 2 ms for all trees, it increases exponentially for
Sλ and MLQP reaching up to 60 seconds for the largest trees
in the dataset.

Moreover, in order to get more insight into how well the
different labels are separated by our similarity measures, we
studied the average intra and inter label distance. Given a
label l, for each instance i with label l, we compute the
distance to the nearest other instance with label l. The intra
label distance of l is the average of all such distances. The
inter label distance of a label l is the same, but finding the
nearest instance with different label. Ideally, the inter/intra
label distance ratio should be higher than 1, and the higher
the better. The top of Table II shows the inter/intra ratio for

TABLE I
TISSUE FLOW PREDICTION ACCURACY (Sλ SIMILARITY BETWEEN PREDICTED AND GROUND TRUTH) FOR DIFFERENT THRESHOLDS T (MINIMUM
NUMBER OF INSTANCES WITH A GIVEN LABEL IN THE DATASET), RESULTING IN DIFFERENT DATASET SIZES (|D|) AND NUMBER OF LABELS (|L|).

T |D| |L| random most-common Sλ MLPD

1-kNN 11-kNN 31-kNN 1-kNN 11-kNN 31-kNN
- 5000 1190 0.093 0.164 0.188 0.221 0.230 0.180 0.208 0.221

10 3393 48 0.124 0.209 0.235 0.273 0.279 0.232 0.270 0.284
50 2764 12 0.128 0.234 0.249 0.294 0.309 0.250 0.298 0.319
100 2292 6 0.161 0.272 0.288 0.334 0.351 0.290 0.356 0.372
400 1183 2 0.495 0.528 0.603 0.690 0.690 0.592 0.638 0.639

TABLE II
inter/intra LABEL DISTANCE RATIO FOR DIFFERENT DATA SUBSETS AS

COMPUTED BY THE Sλ AND THE MLPD DISTANCES (HIGHER IS BETTER).

Sλ MLPD

≥10 with same label 1.916 1.549
≥50 with same label 1.627 1.403
≥100 with same label 1.314 1.272

“PBL” vs rest 1.666 2.245
“Lung” vs rest 1.500 1.458

“BM to MLN” vs rest 1.086 1.047
“MLN to mixed MLN, Jejunum” vs rest 1.112 1.105

subsets of all of those trees for which there was less than
a minimum of 10, 50 or 100 trees sharing the same label,
showing that in average labels tend to be well separated: a
ratio of 1.916 means that, in average, the nearest neighbor
with a different label is 1.916 times further than the nearest
neighbor with the same label. Additionally, we also show (in
the bottom three rows rows of Table II) the two labels that
have the best ratio, and the two that have the lowest ratio. This
shows that there are some labels that are very well separated
by both of our similarity measures, and some that are not,
which indicates that the structure of the lineage trees might
not contain enough information to distinguish these labels.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed an efficient primal-dual approxi-
mation algorithm, MLPD , for a family of labeling problems.
We demonstrated the efficiency of our method on the analy-
sis of immune repertoires, and compared it against baseline
approaches based on refinement operators and quadratic pro-
gramming formulation. One of the major factors effecting the
accuracy of matching is the descriptive nature of the node
features. Adding further features pertaining to the genome
sequence is among our future plans such as the dissimilarity
between the genetic sequence of the two nodes at the level of
nucleotides, regions of genome, and aminoacids.

ACKNOWLEDGMENT

This work is supported in part by support of the National
Science Foundation under Grant Number IIS-1551338.

REFERENCES

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing.
ACM, 1971, pp. 151–158.

[2] L. Babai, “Graph isomorphism in quasipolynomial time,” arXiv preprint
arXiv:1512.03547, 2015.

[3] L. G. Shapiro and R. M. Haralick, “Structural descriptions and inexact
matching,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, no. 5, pp. 504–519, 1981.

[4] J. Kleinberg and E. Tardos, “Approximation algorithms for classifica-
tion problems with pairwise relationships: Metric labeling and markov
random fields,” J. ACM, vol. 49, no. 5, pp. 616–639, Sep. 2002.

[5] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, “A linear programming
formulation and approximation algorithms for the metric labeling prob-
lem,” SIAM Journal on Discrete Mathematics, vol. 18, no. 3, pp. 608–
625, 2004.

[6] S. Ontañón and E. Plaza, “Similarity measures over refinement graphs,”
Machine Learning Journal, vol. 87, pp. 57–92, 2012.

[7] A. A. Sanchez-Ruiz, S. Ontañón, P. A. Gonzalez-Calero, and E. Plaza,
“Refinement-based similarity measure over dl conjunctive queries,” in
Proceedings of ICCBR 2013, 2013, pp. 270–284.

[8] M. L. Williams, R. C. Wilson, and E. R. Hancock, “Deterministic search
for relational graph matching,” Pattern Recognition, vol. 32, no. 7, pp.
1255–1271, 1999.

[9] H. Bunke, “Error correcting graph matching: On the influence of the
underlying cost function,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 21, no. 9, pp. 917–922, 1999.

[10] S. Berretti, A. Del Bimbo, and P. Pala, “A graph edit distance based
on node merging,” in Image and Video Retrieval. Springer, 2004, pp.
464–472.

[11] H. Almohamad and S. O. Duffuaa, “A linear programming approach for
the weighted graph matching problem,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 15, no. 5, pp. 522–525, 1993.

[12] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis, “The complexity of multiway cuts (extended abstract),”
in Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, ser. STOC ’92. New York, NY, USA: ACM, 1992, pp. 241–
251. [Online]. Available: http://doi.acm.org/10.1145/129712.129736

[13] A. V. Karzanov, “Minimum 0-extensions of graph metrics,” Eur. J.
Comb., vol. 19, no. 1, pp. 71–101, Jan. 1998. [Online]. Available:
http://dx.doi.org/10.1006/eujc.1997.0154

[14] T. C. Koopmans and M. Beckmann, “Assignment problems and the loca-
tion of economic activities,” Econometrica: journal of the Econometric
Society, pp. 53–76, 1957.

[15] Y. Bartal, “Probabilistic approximation of metric spaces and its
algorithmic applications,” in Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, ser. FOCS ’96.
Washington, DC, USA: IEEE Computer Society, 1996, pp. 184–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=874062.875536

[16] M. X. Goemans and D. P. Williamson, “The primal-dual method
for approximation algorithms and its application to network design
problems,” in Approximation Algorithms for NP-hard Problems, D. S.
Hochbaum, Ed. Boston, MA, USA: PWS Publishing Co., 1997, pp.
144–191.

[17] N. Komodakis and G. Tziritas, “Approximate labeling via graph cuts
based on linear programming,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 29, no. 8, pp. 1436–1453, 2007.

[18] P. R. van der Laag and S.-H. Nienhuys-Cheng, “Completeness and
properness of refinement operators in inductive logic programming,” The
Journal of Logic Programming, vol. 34, no. 3, pp. 201–225, 1998.

[19] B. Carpenter, The Logic of Typed Feature Structures, ser. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1992, vol. 32.

[20] A. A. Sanchez-Ruiz and S. Ontañón, “Least common subsumer trees
for plan retrieval,” in Proceedings of ICCBR 2014, 2014, pp. 405–419.

