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a b s t r a c t 

When finding relationships in biological systems, we often describe hierarchies based on one facet of the 

data. However, when using this hierarchy to elucidate relationships between metadata, the distribution 

of metadata labels within the hierarchy may exhibit different levels of aggregation—uniform, random, or 

clumped. As of now, there exists no measure for finding the level of aggregation, or “clumpiness”, be- 

tween labels distributed among the leaves of a hierarchical container. We propose a clumpiness measure 

to aid in the quantification of relationships between metadata. We validated our measure with random 

trees and found that the measure is resistant to changes in the tree size, label size, and the number of 

types of labels, compared to the closest alternative measures. We used our clumpiness measure to quan- 

tify the relationships between light and heavy chains in human and mouse B cell and T cell receptor V 

genes based on their motifs. We found that the B cell heavy chains were the most aggregated while the 

T cell chains were the least aggregated and that the IGL chain was clumped the most with the T cell 

chains out of all of the B cell chains. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

f  

m

 

a  

o  

u  

d  

a  

r  

c  

a  

a  

l  

a  
1. Introduction 

Biological systems are often described through hierarchical re-

lationships of different labels. Due to the complex nature of bi-

ological systems, we often describe these hierarchies using only

a subset of the available information about each element in the

dendrogram. For instance, we can create a phylogeny of differ-

ent species based on their genes while at the same time retain-

ing other metadata, or labels, about their behavior, survival, and

phenotypes. However, unlike the gene data, these metadata labels

may be distributed randomly, uniformly, or clumped throughout

the hierarchical structure. In this paper, we present a novel mea-

sure to quantify the extent that a hierarchical structuring of data

describes a relationship of aggregation, or “clumpiness”, between

the metadata labels with which its components are categorized. In
✩ This paper has been recommended for acceptance by Qian Xiaoning. 
∗ Corresponding author at: Department of Biomedical Engineering, Science & 
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his fashion, we can unite the two levels of the structure—the in-

ormation from the data and the categorical information from the

etadata. 

Let us consider the adaptive immune system as a general ex-

mple of a multi-scale biological system. This system is comprised

f several repertoires of immune cells with individual receptors of

nique specificity for different antigens in the environment. In or-

er to cover a wide range of antigens, the body generates a vast

nd diverse pool of differently responding cells called the immune

epertoire of the body. Under specific conditions, these antigens

an trigger competitive proliferation, mutation, and death in only

 subset of the cells. The successful recognition of an antigen by

 cell’s receptor leads to the cell dividing and producing its own

ineage of cells responding to similar antigens. The resulting hier-

rchical structure is associated with metadata labels such as the

issue where one of the descendant cells is found, the function

f that cell in the immune response (such as an effector cell or

 memory cell), or its fate—death or division. Because the meta-

ata labels are of a different scale than the data (in this scenario

he pattern of mutations in a given cell), it is possible to have the

abels widely dispersed in the container (here a hierarchical data

tructure) but be close together in small clumps as opposed to

http://dx.doi.org/10.1016/j.patrec.2016.01.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.01.011&domain=pdf
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eing randomly or uniformly distributed. These scenarios appear

hroughout the biological domain. 

Another hierarchical container of data we may use, in order to

apture the different possible “behaviors” of the cells, is to clus-

er the cells by their common gene expression patterns [1] . In this

ase, the labels describe a common progenitor (ancestor) cell or

arying levels of mutation in its DNA. Finally, we will look specif-

cally in this paper at the hierarchical clustering of sequence frag-

ents. Both in our example and in other biological examples, it is

ommonly considered that motifs can be indicative of binding ca-

ability and interaction potential. In this case, we hypothesize that

 group of cells with similar behaviors are motivated by a subset

f common motifs with related structures. As binding of the re-

eptor and survival of the cell depend on the receptor structure,

n order to look at the relationships between the different parts

f the receptors we need to account for the relationship between

equence fragments. As such, we must find the relationship (con-

ainer) between each region of the receptor (data) before quanti-

ying the overall distribution and degree of aggregation of chains

label). 

As shown in these examples, although the data is clustered

ogether as the result of the tree, we can ask additional ques-

ions about the relationship between the metadata labels within

he tree. More specifically, we would like to quantify the degree

f aggregation, or “clumpiness”, between the labels by using the

tructure of the tree generated by the pairwise relationship of the

ata. While there is a wide range of metrics to measure aggrega-

ion, they are focused on the spatial distribution in two dimensions

2–9] . As of now, there exists no measure for the quantification

f aggregation in a distribution within hierarchical trees. Further-

ore, previous studies attempting to find patterns between meta-

ata in hierarchical structures are based on grouping similar sec-

ions of the container rather than finding the impact of dispersion

n the metadata and are heavily focused on visualization [10–13] .

n this paper, we will demonstrate the power of such an analysis

y focusing on the last example, where we can find the relation-

hip between immune receptors by their sequence fragments. 

In order to look at the distribution of labels, we need new tools.

e propose our clumpiness measure as a way to measure the de-

ree of aggregation between labels in a hierarchical container. Our

easure is robust to the container size, data size, and label size,

nd thus is scale invariant. In addition, our measure is general-

zable to more than two labels and is efficiently computable and

aintainable. In this paper, we will (1) describe the measure, (2)

how the generalization, (3) demonstrate the use of the measure

o find the relationship between receptor chains, and (4) quantify

he response of the measure to noise and sizes. 

. Notations and definitions 

Suppose we have a rooted binary tree with a set of vertices V .

et us now call I ⊆V the set of non-leaf and non-root vertices of the

ree, and T ⊆V all of the leaf vertices whose parent is in I (thus, this

ncludes all the leaf vertices, except the leaves that are children

f the root, since the root is not in I ). Now, let us assume M ⊆T

o be the subset of leaves of interest, our “relevant” leaves, and

 = { L 1 , L 2 , . . . , L n } to be a partition of M (i.e., M = 

⋃ n 
i =1 L n ). This

artition can represent, for example, a set of labels that we care

bout in our application domain. We call these labels “relevant” as

hey contain our relevant leaves. We can now transform the data

rom our domain into a hierarchical container. 

We specifically focus on the domain of immunology in this

tudy. The B and T cells are white blood cells with cell surface re-

eptors, the B cell receptor (BCR) and T cell receptor (TCR) respec-

ively, that bind to antigen which can invoke an immune response.

hese receptors are quite diverse and each B and T cell express just
ne type of this receptor. The BCR is composed of a heavy chain

IGH) and a light chain (either IGK or IGL), while the analagous

hains on the TCR are the β chain (TRB) and the α chain (TRA).

s we want to compose our hierarchical container from structural

nits, we use subregions of these receptor genes in our clustering. 

These subregions, we call “protein fragments”, are 20 amino

cid long sequences taken from an overlapping sliding window

cross an amino acid receptor sequence. Then our hierarchical clus-

ering generates clusters that are each a group of protein frag-

ents with similar sequences (further explained in Section 5.1 ).

he leaves in the hierarchical container represent these clusters,

here each parent contains the union of the children’s protein

ragments. In this way we have completed the transformation of

he data into a hierarchical container of relationships. 

. Clumpiness measure 

.1. Definition 

The clumpiness of the set of leaves M when partitioned accord-

ng to L in a k -ary tree is defined as 

(L ) = 

1 

n 

( 

n ∏ 

i =1 

x 

y i 

) 1 /n 

(1) 

That is, the geometric mean of x weighted by the frequency of

ach label, y i . The result is set between 0 and approximately 1 by

ormalizing by the total number of labels, n . The numerator x is

ntuitively the weighted number of viable vertices in I weighted

y y i , resulting in 

 = 

1 

| I| 
∑ 

v ∈ I 
δ(v ) w (v ) (2) 

 i = 

| L i | 
| T | (3) 

We say that a non-root vertex v is “viable” if δ(v ) = 1 , meaning

hat v has at least one vertex of each label in its descendant leaves.

o, 

(v ) = 

{
0 : 

∨ n 
i =1 | D (v ) ∩ L i | = 0 

1 : otherwise 
(4) 

here D (v ) is the set of descendant leaves of vertex v contained

n M , our relevant leaves. We then weigh the vertex if it is viable

y the number of vertices of each relevant label and how far away

hey are from the vertex in question 

 (v ) = 

∑ 

i ∈ D (v ) 

( ∏ 

j∈ E(v ,i ) 

1 

c( j) 

) 

, (5)

here E(v , i ) is the set of vertices on the shortest path from (and

ncluding) v to (but not including) the relevant leaf i and c ( j ) is the

umber of children of j . We weigh by the number of children as

e want the maximum value of our vertex of interest to be 1, so

e keep dividing the values of the descendant vertices based on

ranching. 

If we want to find the clumpiness of a label L i with itself we

eed to change our approach: the more clumpy L i is with other

abels, by definition the less clumpy L i is with itself. Using this

roperty, we can then have L contain two sets—those leaves in L i 
nd all other leaves. Then the clumpiness of L i with itself becomes

 − C(L ) . For the sake of simplicity, we will focus on the case of a

ooted full binary tree containing 2 labels. 
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L2L1

L2L1 u

L2L1

Fig. 1. Example for the case of finding the maximum C ( L ) through the minimum y i .

The trees grow from the rightmost vertex, with the parent of the rightmost vertex

being labeled u .
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Fig. 2. Example rooted perfect binary trees for use with the clumpiness measure.
A rooted perfect binary tree where each leaf is labeled either L1 or L2 . (a) Alternat- 

ing labels of the leaves result in C({ L1, L2}) = 1, C({L1, L1}) = 0, and C({L2,
 

L2}) = 0. 

(b)Like labels grouped on either side of the tree resulting in C({L1,
 

L2})= 0, C({L1, 
L1})= 1, and C({ L2, L2}) = 1.  
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3.2. Exclusions 

We are excluding two types of vertices in the clumpiness mea-

sure calculation. This vertex will always be counted in every tree

and every analysis, so it’s inclusion is not informative and prevents

a value of 0. 

We also remove any leaves attached to the root vertex from the

analysis. If we were to have the majority of the leaves attached to

the root vertex (assuming the tree is not binary), which is highly

unlikely in a hierarchical clustering scenario, we would just be

manufacturing a smaller and smaller y i value for no apparent rea-

son, inflating the value of the measure. As such, we remove these

vertices from the calculation. 

3.3. Bounds 

In this section, we will describe the bounds of the clumpiness

measure defined above. In order to do so, we will assume a rooted

full binary tree with L = { L 1 , L 2 } . First, if 0 ≤ ( x / y i ) ≤ n , then we

can see that the clumpiness measure is bounded as 0 ≤ C ( L ) ≤ 1.

Thus, let us see the range of x and y i . 0 ≤ x ≤ 1 as w (v ) has a

maximum value of 1 in a binary tree and so the numerator of x

has a maximum value of | I |. 0 < y ≤ 1 as 0 < | L i | ≤ | M | ≤ | T |. 

Next, assume x = 0 . If we have no viable inner vertices, then

the numerator of x is 0 and C(L ) = 0 . Now assume x = 1 . If all in-

ner vertices are viable, then x = 1 . Then the inner vertices nearest

to the leaves must also be viable, so each of those inner vertices

must have leaves from L 1 and L 2 , so | L 1 | = | L 2 | and thus y i = 0 . 5 ,

so (x/y i ) = 2 and thus C(L ) = 1 . Assume y i = 1 . First, we note that

δ(v ) is 0 or 1. Furthermore, 0 ≤ w (v ) ≤ 1 . Then the numerator of x

is between 0 and | I |. Therefore, we find that 0 ≤ x ≤ 1. Finally, if

y i = 1 , then 0 ≤ C ( L ) ≤ 1. 

Now, let us assume a minimum y i . The smallest y i we could

have is (1/| T |), where a label is assigned to only one leaf. Let

us consider a binary tree with 5 vertices—2 inner vertices and 3

leaves as in Fig. 1 . The non-root inner vertex has two children:

one from L 1 and one from L 2 . Then x = 1 , y i = (1 / 2) , and C(L ) = 1 .

Now, when we add on additional vertices, we are increasing | I | by

1, decreasing | T | by 1 and then adding two additional leaves in-

creasing | T | by 2 resulting in a net increase of | T | by 1. 

Let us call this growth u = 1 , where u is the number of inner

vertices excluding the root. We can see an example of these trees

in Fig. 1 . Then u + 1 is the number of leaves whose parent is not

the root. Then we can rewrite ( x / y i ) as 

x 

y i 
= 

(∑ u −1 
j=0 2 − j 

u

)
(

1
u +1

) (6)

= 

(
2 −2 1 −u 

u

)(
1

u +1

) (7)
 

We consider two cases. If we continue to add vertices to the

ide of the binary tree that is irrelevant to x , as they do not have

ny associated labels in their leaves, the overall numerator be-

omes (1/ u ) and the formula converges to 1 and C ( L ) converges to

.5. The maximum value here is at u = 1 , where we end up with

(L ) = 1 . However, if we were to add on vertices which are rele-

ant to x , we increase | I | and | T | by 1 and we increase the numer-

tor of x as well. Here, w (v ) grows based on u as all inner vertices

re relevant. The numerator of x is a geometric series that con-

erges to 2 as u approaches infinity. The maximum of this equation

ccurs at u = 4 , i.e., C(L ) = 1 . 17 . 

Assigning each label to every other leaf in order to increase x ,

e see that x increases at a decaying rate while the numerator of

 i increases at a constant rate, so we would never go above the

forementioned value of 1.17, which is the absolute maximum of

 ( L ). 

.4. Example 

In order to fully illustrate the process by which the measure

orks, we here provide an example using two binary trees ( Fig. 2 ).

n both trees, we first compute the clumpiness of L 1 with L 2 and,

or illustration purposes, we will then compute the clumpiness of

 1 with itself. 

We will start with finding the clumpiness between L 1 and L 2 .

he measure is as follows: in the tree from Fig. 2 (a), we ignore the

oot vertex. Starting at the lower left with vertex 2, we see that it

as at least one L 1 and one L 2 in its descendant leaves, so it is a

iable vertex. Its value is 1 as vertex 2 has 2 children on the short-

st path to 2 relevant leaves, so w (v 2 ) = (1 / 2) + (1 / 2) = 1 . Then

ertices 3, 5, and 6 also have a value of 1 for the same reason.

or vertex 1, we note that again it has at least one label of each

ype in its descendant nodes, but they have a shortest distance of 2

way. Then vertex 1 has 4 relevant descendant leaves, so by getting

he number of children at each step we end up with (1 / 2)(1 / 2) +
(1 / 2)(1 / 2) + (1 / 2)(1 / 2) + (1 / 2)(1 / 2) = 1 . The same is true for
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ertex 4. Then our x in the clumpiness measure is equal to (6 / 6) =
 . Our y i would be y L 1 = (4 / 8) = (1 / 2) for L 1 and y L 2 = (4 / 8) =

(1 / 2) for L 2 , as both labels take up the same fraction of the leaves.

t’s also important to note here that we would exclude any leaves

ttached to the root vertex in this measure as stated in Section 3.1 .

hen our clumpiness becomes 

( { L 1 , L 2 } ) = 

1 

2 

(
1 

1 
2 

+ 

1 

1 
2 

)1 / 2 

= 

1 

2 

(4) 
1 / 2 

= 

1 

2 

2 

= 1 

If we look at the tree in Fig. 2 (b), we see that the only

ode with descendant leaves from both labels is the root vertex—

owever, we exclude the root vertex from the measure. As a result,

ur x value in the measure is 0 and so C( { L 1 , L 2 } ) = 0 . 

Now let us look at the clumpiness of L 1 with itself. In Fig. 2 (a),

e want to find the clumpiness of L 1 with any other label that

s not L 1 . That is, each label that is not L 1 is lumped together

nto some generic label, G . Since we only have one other label in

his tree, L 2 , we will just rename all L 2 to G . Then C( { L 1 , L 2 } ) =
( { L 1 , G } ) = 1 . In order to find the clumpiness of L 1 with itself, we

ust take C( { L 1 } ) = 1 − C( { L 1 , G } ) = 0 . For the tree in Fig. 2 (b), we

ave C( { L 1 } ) = C( { L 1 , G } ) = 1 − C( { L 1 , L 2 } ) = 1 . 

The two trees in Fig. 2 illustrate the theoretical concept of

lumpiness—we would say that the tree in Fig. 2 (a) is maximally

lumpy with L 1 and L 2 but minimally clumpy with L 1 and itself

nd vice versa with Fig. 2 (b). 

There are cases for which the value of clumpiness exceeds 1 (to

 maximum of 1.17) as explained in Section 3.3 . These cases have

xtremely biased subtrees expanding in one direction. While the

aximum appears in a very small tree, there is still the possibility

f having a value greater than 1 if the tree grows in a fashion as

een in Fig. 1 . 

. Simulations 

In order to verify that the measure measures clumpiness and

ggregation of a distribution as we intended, we artificially gen-

rated random trees with known clumpiness distributions. In ad-

ition, we also compared the clumpiness measure to its closest

quivalents using the diversity of each vertex as described below.

ast, we observed the degree of noise and consistency in each case

n different sized trees. 

.1. Random tree generation 

We generated a collection of random trees that simulate a

lumpy environment. We made random rooted full binary trees

f size s ± 10 vertices. We began from a root vertex and randomly

hoose either 0 or 2 children, stop if the size of the tree is met, or

therwise recursively iterate this process on the leaves. Trees that

ere not of the wanted size with the variation were discarded. We

abeled the leaves of the trees with L 1 and L 2 (and L 3 where ap-

licable) in the following way: we generated a random list l of the

eaves in the tree. Given a neighborhood of size t , we chose the

rst leaf v ∈ l, assigned the nearest t leaves that label, and subse-

uently removed v from l , repeating this cycle until all leaves were

abeled. We did not label a leaf if the leaf was already labeled. This

rocess eventually gave us a random rooted full binary tree of size

 ± 10 with labeled leaves. 
.2. Measure quantifications 

We used three measures on these randomly generated trees for

izes 50 0, 10 0 0, 150 0, and 20 0 0 for neighborhood values t from 1

o 20. For each size and neighborhood, we generated three types

f trees: (1) trees with approximately even amounts of L 1 and L 2 ,

2) trees with approximately even amounts of L 1 , L 2 , and L 3 , and

nally (3) trees with three times the amount of L 1 compared to L 2 
r L 3 . We compared our clumpiness measure with two other mea-

ures: (1) the arithmetic mean diversity of each inner node in the

ree, and (2) the geometric mean diversity of each inner node in

he tree [14] . We ran these measures on 100 randomly generated

rees of each type, resulting in 24,0 0 0 analyses. 

Diversity of order 1 [14,15] , as used in this paper, is the expo-

ential function of Shannon entropy [16,17] . The entropy of a ver-

ex, in our case, is defined as the Shannon entropy between the

wo labels in question for the measure as opposed to the tradi-

ional entropy of a certain height for hierarchical networks [18] .

e can then say that the diversity of a vertex is in [1, 2], as we

re finding the diversity only of the relevant leaves, or leaves with

abels pertaining to the clumpiness of what we want. The diversity

ill either tell us that we have 1 type of label, 2 types of labels,

r somewhere in between. Then the arithmetic mean of all of the

nner vertices should tell us something about the clumpiness be-

ween two labels. 

Likewise, the geometric mean of the diversity in the tree is us-

ng the same geometric mean as our clumpiness measure, where

 in this case is the arithmetic mean diversity of the inner nodes.

e use this measure to try to normalize the value based on sam-

le sizes. 

.3. Results 

For each tree, we performed “inter-clumping” comparisons,

here we measured the degree of clumpiness between different

airs of labels, and “intra-clumping” comparisons, where we mea-

ured the degree of clumpiness for a label with itself. We com-

ared our measure with diversity by applying the arithmetic mean

iversity and the geometric mean diversity of each vertex of each

ree ( Fig. 3 ). For all trees of all sizes, the three measures produced

igher values for the intra-clumping comparisons and lower values

or the inter-clumping comparison of L 1 and L 2 . For trees that had

pproximately equal quantities of L 1 and L 2 , the intra-clumping

omparisons were perfectly overlapping in our measure by defi-

ition, while the diversity measures were overlapping but not per-

ectly ( Fig. 3 (a)). 

In addition, our measure has the inter- and intra-clumping

omparisons meeting while the diversity measures do not

 Fig. 3 (a)). Furthermore, we see that our measure increases and

ecreases the same amount, while the diversity measures have the

nter-clumping comparison decreasing less than the intra-clumping

omparisons increase ( Fig. 3 (a)). In the trees with approximately

qual quantities of L 1 , L 2 , and L 3 , we see that our measure main-

ains the same range as before whereas the diversity measures do

ot ( Fig. 3 (b)). In the trees with three times as many L 1 leaves as

 2 or L 3 , our measure remains stable in its clumpiness with respect

o the number of neighbors assigned, while the diversity measures

re inconsistent with the previous types of trees and even within

ntra-clumping comparisons as the L 1 comparison is always smaller

han the L 2 comparison ( Fig. 3 (c)). 

From these simulations, we see that our clumpiness measure

as more consistent than the other measures when more labels

r different sample sizes of labels are introduced. Furthermore, the

easure was more descriptive about the distribution of the labels

han the other two measures and more in line with our concept of

lumpiness and aggregation. 
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Fig. 3. Values of potential clumpiness measures for labels L 1 , L 2 , and L 3 of different populations in different size trees. Each facet within the plots represents values from 

random rooted full binary trees of size 50 0, 10 0 0, 150 0, and 20 0 0 vertices (with a variation of ± 10 vertices). The x -axis is the number of nearest leaves to a randomly 

chosen leaf that all become the same label, unless a leaf is already assigned a label. The y -axis represents either our own clumpiness measure, the arithmetic mean diversity 

of the tree, or the geometric mean diversity of the tree (we exclude the root vertex in all instances). Each point in a line represent the median of the measure from 100 

random trees of that type, while the gray shading represents the median absolute deviation. There are three lines in each plot, one representing the measure of L 1 with 

itself (red), L 1 with L 2 (blue), and L 2 with itself (green). (a) The clumpiness of trees with approximately equal quantities of L 1 and L 2 . (b) The clumpiness of trees with 

approximately equal quantities of L 1 , L 2 , and L 3 . (c) The clumpiness of trees with three times as many L 1 leaves as L 2 or L 3 . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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4.4. Simulations validate the clumpiness measure 

We say that clumpiness in our simulated trees is defined by

how many surrounding neighbors are assigned the same type as a

randomly selected leaf. By this definition, we see that our mea-

sure did capture clumpiness in the random trees ( Fig. 3 ). That

is, the more neighbors assigned closest to a random leaf, the

less clumpy our inter-clumping comparison was and the more

clumpy our intra-clumping comparisons were. This effect was not

only consistent across tree sizes, but the values were as well. In

trees with approximately equal quantities of L 1 and L 2 , we see

that all of the measures generally withstand the size of the tree

( Fig. 3 (a)). Even when there are three labels in the tree of ap-

proximately equal quantities, we still see a decrease in all inter-

clumping comparisons and an increase in all intra-clumping com-

parisons ( Fig. 3 (b)). The diversity measures, however, have very

different ranges from before and even within the same compar-

isons. They also have different ranges between the inter- and intra-

clumping comparisons within this type of tree, seemingly due to

the addition of a third label influencing the sample ( Fig. 3 (b)).

When calculating the clumpiness in a tree with varying sample

sizes, however, we see that our measure is able to withstand the

biases while the diversity measures do not ( Fig. 3 (c)). For this rea-

son, we propose that our measure is stable across tree sizes and

sample sizes and can be used for finding the relationships be-

tween “wholes” in hierarchical clusterings of “parts of a whole”

analyses. 

5. Biological application 

With our clumpiness measure, we can now answer questions

which require the union of different levels of the hierarchical con-

tainer. We here sought the relationship between heavy and light

chains of the germline immune receptors based on their sequence

fragments. These relationships can reveal the evolutionary path-

ways of the receptors and can identify similarities between the

BCR and the TCR. 
.1. Hierarchical clustering 

We analyzed 517 human and 677 mouse light chain and heavy

hain V gene protein sequences based on the entire known B cell

nd T cell receptor repertoires in the ImMunoGeneTics (IMGT)

atabase [19] . Taking an overlapping sliding window across all

194 alleles, we split the sequences into fragments consisting 20

esidues. We used hierarchical spectral clustering to cluster to-

ether all fragments into a binary tree, where the leaves of the tree

re clusters [20] . The clustering algorithm in [20] uses fuzzy met-

ics to define similarity between strings by counting the number

f “qgrams” within a string. Here, we used qgrams with q = 3 to

enerate the tree. The algorithm stops when the Newman–Girvain

odularity for a clustering step is less than or equal to 0, leaving

s a with a leaf that contains a collection of fragments that we

all a cluster [20] . From this tree, we labeled each cluster for its

riginating chain type (light or heavy) and receptor type (BCR or

CR). Clusters that contained multiple labels were not measured

or clumpiness, but remained in the tree as irrelevant vertices in

rder to maintain the structure. 

.2. Results 

The clumpiness between chains from human and mouse BCR

nd TCR light chain and heavy chain V gene protein sequence frag-

ents using our measure can be found in Fig. 4 . Each chain was

ighly related with itself, with IGH clusters being the most clumpy

hile TRB clusters were the least clumpy. We found that the next

ighest relationships were the TCR chains with themselves and the

ight chain BCRs with themselves. Lastly, we found that IGL clusters

ad the closest relationship with the TCR chains. 

.3. IGL fragments clump more with TCRs than IGH or IGK 

Using our clumpiness measure and hierarchical spectral clus-

ering, we sought the relationships between chains in human and

ouse BCR and TCR V gene protein sequences ( Fig. 4 ). We found

hat heavy chain BCRs had the highest similarity out of every
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Fig. 4. The heatmap of clumpiness values between chains in the hierarchical spec- 

tral clustering of human and mouse BCR and TCR protein sequence fragments. The 

value in each cell is the value of the clumpiness measure and the color corresponds 

to each value, with white as 0 and red as 1. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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hain, followed by IGK, IGL, TRA, and TRB. We have previously

ound TCRs to be more diverse than their BCR counterparts, so this

nding makes biological sense [17] . We also saw that the relation-

hip between TRA and TRB was stronger than between IGK and

GL. In fact, IGH was very much unlike IGK or IGL ( Fig. 4 ). Further-

ore, we found that IGL had the highest relationship out of all BCR

hains to the TCR chains ( Fig. 4 ). This finding supports previous ev-

dence stating that IGL was the first chain to branch off of its TCR

ncestors [21] . 

It is worth noting that neither the arithmetic mean diversity

or geometric mean diversity measures were able to capture this

nformation due to the low sample size of IGL compared to the

ther chains (results not shown). 

. Conclusions 

We have demonstrated the robustness of this clumpiness mea-

ure to differing tree sizes and sample sizes and have shown its

tility in a real biological application. Using this measure, we are

ow able to link the relationship of the data creating a hierarchi-

al container with the metadata categorizing the data. With this

nification, we were able to show that there exists a relationship

etween the BCR and TCR receptor chains through IGL using short

equence fragments or motifs from the receptor genes. The gen-

ralization for this method should provide the discovery of previ-

usly unseen patterns within hierarchical containers. 
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